Class – XII MATHEMATICS- 041 SAMPLE QUESTION PAPER 2019-20

Time: 3 Hrs.

Maximum Marks: 80

General Instructions:

- (i) All the questions are compulsory.
- (ii) The question paper consists of 36 questions divided into 4 sections A, B, C, and D.
- (iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 6 questions of 4 marks each. Section D comprises of 4 questions of 6 marks each.
- (iv) There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each, and two questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is not permitted.

	SECTION A			
Q1 - 0	Q1 - Q10 are multiple choice type questions. Select the correct option			
1	If A is any square matrix of order 3×3 such that $ A = 3$, then the value of $ adjA $ is ? (a) 3 (b) $\frac{1}{3}$ (c) 9 (d) 27	1		
2	Suppose P and Q are two different matrices of order $3 \times n$ and $n \times p$, then the order of the matrix P \times Q is? (a) $3 \times p$ (b) $p \times 3$ (c) $n \times n$ (d) 3×3	1		
3	If $(2\hat{i} + 6\hat{j} + 27\hat{k}) \times (\hat{i} + p\hat{j} + q\hat{k}) = \vec{0}$, then the values of p and q are ? (a) p= 6, q=27(b)p=3, q= $\frac{27}{2}$ (c) p=6, q= $\frac{27}{2}$ (d) p=3, q=27	1		
4	If A and B are two events such that $P(A)=0.2$, $P(B)=0.4$ and $P(A \cup B)=0.5$, then value of $P(A/B)$ is ? (a)0.1 (b)0.25 (c)0.5 (d) 0.08	1		
5	The point which does not lie in the half plane $2x + 3y - 12 \le 0$ is (a) (1,2) (b) (2,1) (c) (2,3) (d)(-3,2)	1		
6	(a) (1,2) (b) (2,1) (c) (2,3) (d) (-3,2) If $\sin^{-1}x + \sin^{-1}y = \frac{2\pi}{3}$, then the value of $\cos^{-1}x + \cos^{-1}y$ is (a) $\frac{2\pi}{3}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{2}$ (d) π	1		

7An um contains 6 balls of which two are red and four are black. Two balls are drawn at random. Probability that they are of the different colours is18 $\int \frac{dx}{5}(b) = \frac{1}{15}(c) = \frac{8}{15}(d) = \frac{4}{15}$ 18 $\int \frac{dx}{\sqrt{9-25x^2}}$ (a) $\sin^{-1}(\frac{5x}{3}) + c(b) = \frac{1}{5}\sin^{-1}(\frac{5x}{3}) + c$ (c) $\frac{1}{6}\log(\frac{3+5x}{3-5x}) + c(d) = \frac{1}{30}\log(\frac{3+5x}{3-5x}) + c$ 19What is the distance(number) between the two planes $3x + 5y + 7z = 3$ and $9x + 15y + 21z = 9$? (a) $0(b) = 3(c) = \frac{6}{633}(d) = 6$ 110The equation of the line in vector form passing through the point(-1,3,5) and parallel to line $\frac{x-3}{2} = \frac{y-4}{3}, z = 2$. is (a) $r^2 = (-i + 3j + 5k) + \lambda(2i + 3j + k)$. (b) $r^2 = (-i + 3j + 5k) + \lambda(2i + 3j + k)$. (c) $r^2 = (2i + 3j - 2k) + \lambda(-i + 3j + 5k)$ 111If the bug the gratest integer function defined $asf(x) = [x]$ and g be the modulus function defined as $g(x) = x $, then the value of g of $(-\frac{5}{4})$ is $x = 1$, then the value of k is112If the function $f(x) = \frac{x^2-1}{x^2-1}$ when $x \neq 1$ is given to be continuous at $x = 1$, then the value of k is $\frac{1}{x-2}$ 113If $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ 4 \end{bmatrix}$, then value of k is $\frac{1}{x-2}$ 114If the function $f(x) = \frac{x^2-2x^3}{x-2x^3}$, if x increases at the rate of 2units/sec, then at $x = 3$ the slope of the curve is changing at $\frac{1}{x-2}$ 115The magnitude of projection of $(2i - j + k)$ on $(i - 2j + 2k)$ is $\frac{1}{2}$ 116Check whether (I + m + n) is a factor of the $1 + m = n + 1$ $2 = 2 = 2$ 117Evaluate $(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2$	-	An any sectors of the startist two are and and from any black. Two halls	4
$\begin{aligned} (a) \frac{2}{5}(b) & \frac{1}{15}(c) & \frac{8}{15}(d) \frac{4}{15} \\ 8 & \int \frac{dx}{\sqrt{9-25x^2}} & 1 \\ (a) \sin^{-1}\left(\frac{5x}{3}\right) + c(b)\frac{1}{5}\sin^{-1}\left(\frac{5x}{3}\right) + c \\ (c) \frac{1}{6}\log\left(\frac{3+5x}{3-5x}\right) + c(d)\frac{1}{30}\log\left(\frac{3+5x}{3-5x}\right) + c \\ 9 & \text{What is the distance (in units) between the two planes} \\ 3x + 5y + 7z = 3 and 9x + 15y + 21z = 9? \\ (a) 0(b) 3(c) & \frac{1}{\sqrt{63}}(d) = 6 \\ 10 & \text{The equation of the line in vector form passing through the point(-1,3,5) and parallel to line \frac{x-2}{3} = \frac{y-4}{3}, z = 2. is(a) \vec{r} = (-1+3) + 5k + \lambda(21+3) + k. (b) \vec{r} = (-1+3) + 5k + \lambda(21+3) + k. (c) \vec{r} = (21+3) - 2k + \lambda(-1+3) + 5k. (c) \vec{r} = (21+3) - 2k + \lambda(-1+3) + 5k. (c) \vec{r} = (21+3) + \lambda(-1+3) + 5k. (c) \vec{r} = (21-3) - 2k + \lambda(-1+3) + 2k + \lambda(-1+3) + 2k. (c) \vec{r} = (21-3) - 2k + \lambda(-1+3) + 2k. (c) \vec{r} = (21-3) - 2k + \lambda(-1+3) + 2k. (c) \vec{r} = (21-3) - 2k + \lambda(-1+3) + 2k. (c) \vec{r} = (21-3) - 2k. (c) \vec{r} = (21-3) - 2k. (c$	1		1
$8 \int \frac{dx}{\sqrt{9-25x^2}} = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$		are drawn at random. I robability that they are of the different colours is	
$8 \int \frac{dx}{\sqrt{9-25x^2}} = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$		(a) $\frac{2}{(b)}$ $\frac{1}{(c)}$ $\frac{8}{(d)}$ $\frac{4}{(c)}$	
$\begin{array}{ c c c c c } \hline & (a) \sin^{-1}\left(\frac{5x}{3}\right) + c(b)\frac{1}{5}\sin^{-1}\left(\frac{5x}{3}\right) + c \\ & (c)\frac{1}{6}\log\left(\frac{3+5x}{3-5x}\right) + c(d)\frac{1}{30}\log\left(\frac{3+5x}{3-5x}\right) + c \\ \hline & (a) 0(b) 3(c) - \frac{1}{60}\frac{1}{60} \\ \hline & (b) 0(c) 0(c) 0(c) 0(c) 0(c) 0(c) 0(c) 0(c$			
$\begin{array}{ c c c c c } \hline & (a) \sin^{-1}\left(\frac{5x}{3}\right) + c(b)\frac{1}{5}\sin^{-1}\left(\frac{5x}{3}\right) + c \\ & (c)\frac{1}{6}\log\left(\frac{3+5x}{3-5x}\right) + c(d)\frac{1}{30}\log\left(\frac{3+5x}{3-5x}\right) + c \\ \hline & (a) 0(b) 3(c) - \frac{1}{60}\frac{1}{60} \\ \hline & (b) 0(c) 0(c) 0(c) 0(c) 0(c) 0(c) 0(c) 0(c$	8	$\int dx$	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\int \frac{1}{\sqrt{9-25x^2}}$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(a) $\sin^{-1}\left(\frac{5x}{2}\right) + c(b)^{\frac{1}{2}}\sin^{-1}\left(\frac{5x}{2}\right) + c$	
9What is the distance (in units) between the two planes $3x + 5y + 7z = 3$ and $9x + 15y + 21z = 9$? (a) 0(b) 3(c) $\frac{6}{\sqrt{63}}(d) = 6$ 110The equation of the line in vector form passing through the point(-1,3,5) and parallel to line $\frac{x-3}{2} = \frac{y-4}{3}, z = 2$. is 			
$3x + 5y + 7z = 3$ and $9x + 15y + 21z = 9$? (a) $0(b) 3(c) \frac{6}{\sqrt{63}}(d) 61010The equation of the line in vector form passing through the point(-1,3,5) andparallel to line \frac{x-3}{2} = \frac{y-4}{3}, z = 2. is(a) \vec{r} = (-\hat{r} + 3\hat{j} + 5\hat{k}) + \lambda(2\hat{r} + 3\hat{j} + \hat{k}).(b) \vec{r} = (-\hat{r} + 3\hat{j} - 2\hat{k}) + \lambda(-\hat{r} + 3\hat{j} + 5\hat{k})(c) \vec{r} = (2\hat{r} + 3\hat{j} - 2\hat{k}) + \lambda(-\hat{r} + 3\hat{j} + 5\hat{k})(d) \vec{r} = (2\hat{r} + 3\hat{j}) + \lambda(-\hat{r} + 3\hat{j} + 5\hat{k})1(Q11 - Q15) Fill in the blanks11If the the greatest integer function defined as f(x) = [x] and g be the modulusfunction defined as g(x) = x , then the value of g(-\frac{5}{4}) is112If the function f(x) = \left(\frac{x^{2-1}}{k-1} whenk \neq 1 is given to be continuous atk \neq 1 is given to be continuous atx = 1, then the value of k isk = 2.113If \begin{bmatrix} 1 & 2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\$		(c) $\frac{1}{6} \log \left(\frac{1}{3-5x} \right) + c(d) \frac{1}{30} \log \left(\frac{1}{3-5x} \right) + c$	
$3x + 5y + 7z = 3$ and $9x + 15y + 21z = 9$? (a) $0(b) 3(c) \frac{6}{\sqrt{63}}(d) 61010The equation of the line in vector form passing through the point(-1,3,5) andparallel to line \frac{x-3}{2} = \frac{y-4}{3}, z = 2. is(a) \vec{r} = (-\hat{r} + 3\hat{j} + 5\hat{k}) + \lambda(2\hat{r} + 3\hat{j} + \hat{k}).(b) \vec{r} = (-\hat{r} + 3\hat{j} - 2\hat{k}) + \lambda(-\hat{r} + 3\hat{j} + 5\hat{k})(c) \vec{r} = (2\hat{r} + 3\hat{j} - 2\hat{k}) + \lambda(-\hat{r} + 3\hat{j} + 5\hat{k})(d) \vec{r} = (2\hat{r} + 3\hat{j}) + \lambda(-\hat{r} + 3\hat{j} + 5\hat{k})1(Q11 - Q15) Fill in the blanks11If the the greatest integer function defined as f(x) = [x] and g be the modulusfunction defined as g(x) = x , then the value of g(-\frac{5}{4}) is112If the function f(x) = \left(\frac{x^{2-1}}{k-1} whenk \neq 1 is given to be continuous atk \neq 1 is given to be continuous atx = 1, then the value of k isk = 2.113If \begin{bmatrix} 1 & 2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\$	a	What is the distance (in units) between the two planes	1
(a) $0(b) 3(c) = \frac{1}{\sqrt{63}}(d) 6$ 10The equation of the line in vector form passing through the point(-1,3,5) and parallel to line $\frac{x-3}{2} = \frac{y-4}{3}, z = 2$. is (a) $\vec{r} = (-\hat{i} + 3\hat{j} + 5\hat{k}) + \lambda(2\hat{i} + 3\hat{j} + \hat{k})$. (b) $\vec{r} = (-\hat{i} + 3\hat{j} + 5\hat{k}) + \lambda(2\hat{i} + 3\hat{j} + \hat{k})$. (c) $\vec{r} = (2\hat{i} + 3\hat{j} - 2\hat{k}) + \lambda(-\hat{i} + 3\hat{j} + 5\hat{k})$ (d) $\vec{r} = (2\hat{i} + 3\hat{j}) + \lambda(-\hat{i} + 3\hat{j} + 5\hat{k})$ 111If f be the greatest integer function defined as $f(x) = [x]$ and g be the modulus function defined as $g(x) = x $, then the value of $g of \left(-\frac{5}{4}\right)$ is112If the function $f(x) = \left(\frac{x^{2-1}}{k}, when x \neq 1\right)$ is given to be continuous at $x = 1$, then the value of k is113If $\begin{bmatrix} 1 & 2\\ 2 & 1 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 5\\ 4 \end{bmatrix}$, then value of y is	Ũ		
10The equation of the line in vector form passing through the point(-1,3,5) and parallel to line $\frac{x-3}{2} = \frac{y-4}{3}, z = 2$. is (a) $\vec{r} = (-\hat{i} + 3\hat{j} + 5\hat{k}) + \lambda(2\hat{i} + 3\hat{j} + \hat{k})$. (b) $\vec{r} = (-\hat{i} + 3\hat{j} + 5\hat{k}) + \lambda(2\hat{i} + 3\hat{j} + 5\hat{k})$ (c) $\vec{r} = (2\hat{i} + 3\hat{j} - 2\hat{k}) + \lambda(-\hat{i} + 3\hat{j} + 5\hat{k})$ (d) $\vec{r} = (2\hat{i} + 3\hat{j}) + \lambda(-\hat{i} + 3\hat{j} + 5\hat{k})$ 1(2011 - Q15) Fill in the blanks 11If the bet the greatest integer function defined as $f(x) = [x]$ and g be the modulus function defined as $g(x) = x $, then the value of $g of \left(-\frac{5}{4}\right)$ is			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	V05	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10		1
(b) $\vec{r} = (-\hat{1} + 3\hat{j} + 5\hat{k}) + \lambda(2\hat{1} + 3\hat{j})$ (c) $\vec{r} = (2\hat{1} + 3\hat{j} - 2\hat{k}) + \lambda(-\hat{1} + 3\hat{j} + 5\hat{k})$ (d) $\vec{r} = (2\hat{1} + 3\hat{j}) + \lambda(-\hat{1} + 3\hat{j} + 5\hat{k})$ 11If f be the greatest integer function defined as $f(x) = [x]$ and g be the modulus function defined as $g(x) = x $, then the value of g of $\left(-\frac{5}{4}\right)$ is		2 3	
(c) $\vec{r} = (2\hat{i} + 3\hat{j} - 2\hat{k}) + \lambda(-\hat{i} + 3\hat{j} + 5\hat{k})$ (d)(d) $\vec{r} = (2\hat{i} + 3\hat{j}) + \lambda(-\hat{i} + 3\hat{j} + 5\hat{k})$ (Q11 - Q15) Fill in the blanksIf f be the greatest integer function defined as $f(x) = [x]$ and g be the modulus function defined as $g(x) = x $, then the value of $g \circ f(-\frac{5}{4})$ is112If the function $f(x) = \begin{cases} x^{2-1} \\ k = 1 \end{cases}$ when $x \neq 1$ is given to be continuous at $x = 1$, then the value of k is113If $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$, then value of y is114If tangent to the curve $y^2 + 3x - 7 = 0$ at the point (h, k) is parallel to line $x - y = 4$, then value of k is?115The magnitude of projection of $(2\hat{i} - \hat{j} + \hat{k})$ on $(\hat{i} - 2\hat{j} + 2\hat{k})$ is115The magnitude 5 units and in the direction opposite to $2\hat{i} + 3\hat{j} - 6\hat{k}$ is116Check whether $(1 + m + n)$ is a factor of the $2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =$			
(d) $\vec{r} = (2\hat{i} + 3\hat{j}) + \lambda(-\hat{i} + 3\hat{j} + 5\hat{k})$ (Q11 - Q15) Fill in the blanks11If f be the greatest integer function defined as $f(x) = [x]$ and g be the modulus function defined as $g(x) = x $, then the value of g of $\left(-\frac{5}{4}\right)$ is			
(Q11 - Q15) Fill in the blanks 11 If f be the greatest integer function defined $asf(x) = [x]$ and g be the modulus function defined as $g(x) = x $, then the value of g of $\left(-\frac{5}{4}\right)$ is		, , , , ,	
11If f be the greatest integer function defined $asf(x) = [x]$ and g be the modulus function defined as $g(x) = x $, then the value of $g of \left(-\frac{5}{4}\right)$ is112If the function $f(x) = \left\{ \begin{array}{c} x^{2-1} \\ x-1 \\ x = 1 \end{array}\right\}$ when $x \neq 1$ is given to be continuous at $x = 1$, then the value of k is113 $If \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$, then value of y is114If tangent to the curve $y^2 + 3x - 7 = 0$ at the point (h, k) is parallel to line $x - y = 4$, then value of k is115The magnitude of projection of $(2\hat{i} - \hat{j} + \hat{k})$ on $(\hat{i} - 2\hat{j} + 2\hat{k})$ is116Check whether $(I + m + n)$ is a factor of the $2 = 2 = 2$ 117Evaluate1		(a) $\Gamma = (21 + 3j) + \lambda(-1 + 3j + 5K)$	
11If f be the greatest integer function defined $asf(x) = [x]$ and g be the modulus function defined as $g(x) = x $, then the value of $g of \left(-\frac{5}{4}\right)$ is112If the function $f(x) = \left\{ \begin{array}{c} x^{2-1} \\ x-1 \\ x = 1 \end{array}\right\}$ when $x \neq 1$ is given to be continuous at $x = 1$, then the value of k is113 $If \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$, then value of y is114If tangent to the curve $y^2 + 3x - 7 = 0$ at the point (h, k) is parallel to line $x - y = 4$, then value of k is115The magnitude of projection of $(2\hat{i} - \hat{j} + \hat{k})$ on $(\hat{i} - 2\hat{j} + 2\hat{k})$ is116Check whether $(I + m + n)$ is a factor of the $2 = 2 = 2$ 117Evaluate1	(Q11 -	- Q15) Fill in the blanks	
12If the function $f(x) = \begin{cases} x^{2-1} \\ x-1 \\ x = 1 \end{cases}$ when $x \neq 1$ is given to be continuous at $x = 1$, then the value of k is			1
12 If the function $f(x) = \begin{cases} x^{2-1} \\ k \\ x = 1 \end{cases}$ when $x \neq 1$ is given to be continuous at $x = 1$, then the value of k is 1 13 If $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$, then value of y is 1 14 If tangent to the curve $y^{2} + 3x - 7 = 0$ at the point (h, k) is parallel to line $x - y = 4$, then value of k is? 1 14 If tangent to the curve $y^{2} + 3x - 7 = 0$ at the point (h, k) is parallel to line $x - y = 4$, then value of k is? 1 15 For the curve $y = 5x - 2x^{3}$, if x increases at the rate of 2units/sec, then at $x = 3$ the slope of the curve is changing at 1 15 The magnitude of projection of $(2\hat{i} - \hat{j} + \hat{k})$ on $(\hat{i} - 2\hat{j} + 2\hat{k})$ is 1 16 Check whether $(1 + m + n)$ is a factor of the determinant $\begin{vmatrix} 1 + m & m + n & n + 1 \\ n & 1 & m \\ 2 & 2 & 2 \end{vmatrix}$ or not. Give reason. 1 17 Evaluate 1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	(x^2-1) where $y = (1-1)$	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		If the function $f(x) = \begin{cases} x^{-1} & \text{when } x \neq 1 \end{cases}$ is given to be continuous at	
13If $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$, then value of y is114If tangent to the curve $y^2 + 3x - 7 = 0$ at the point (h, k) is parallel to line $x - y = 4$, then value of k is? OR For the curve $y = 5x - 2x^3$, if x increases at the rate of 2units/sec, then at $x = 3$ the slope of the curve is changing at115The magnitude of projection of $(2\hat{i} - \hat{j} + \hat{k})$ on $(\hat{i} - 2\hat{j} + 2\hat{k})$ is116Check whether $(I + m + n)$ is a factor of the determinant $\begin{bmatrix} I + m & m + n & n + I \\ n & I & m \\ 2 & 2 & 2 \end{bmatrix}$ or not. Give reason.117Evaluate1		x = 1 then the value of k is	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
14If tangent to the curve $y^2 + 3x - 7 = 0$ at the point (h, k) is parallel to line $x - y = 4$, then value of k is? OR1ORFor the curve $y = 5x - 2x^3$, if x increases at the rate of 2units/sec, then at $x = 3$ the slope of the curve is changing at15The magnitude of projection of $(2\hat{i} - \hat{j} + \hat{k})$ on $(\hat{i} - 2\hat{j} + 2\hat{k})$ is16Vector of magnitude 5 units and in the direction opposite to $2\hat{i} + 3\hat{j} - 6\hat{k}$ is16Check whether $(1 + m + n)$ is a factor of the $2 = 2 = 2$ 17Evaluate	13	$\left[If \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$, then value of y is	1
$ \begin{array}{c} x - y = 4, \text{ then value of } k \text{ is } _? \\ \hline OR \\ \hline For the curve \ y = 5x - 2x^3, \text{ if } x \text{ increases at the rate of 2 units/sec, then at } \\ x = 3 \text{ the slope of the curve is changing at } ____ \\ \hline 15 \\ \hline The magnitude of projection of (2î - ĵ + k̂) on (î - 2ĵ + 2k̂) \text{ is } ___ \\ \hline OR \\ \hline Vector of magnitude 5 units and in the direction opposite to 2î + 3ĵ - 6k̂ is __ \\ \hline (Q16 - Q20) \text{ Answer the following questions} \\ \hline 16 \\ \hline Check whether (l + m + n) \text{ is a factor of the } \\ determinant \begin{vmatrix} l + m & m + n & n + l \\ n & l & m \\ 2 & 2 & 2 \end{vmatrix} \text{ or not. Give reason.} \\ \hline 17 \\ \hline Evaluate \end{matrix} $	14		1
ORFor the curve $y = 5x - 2x^3$, if x increases at the rate of 2units/sec, then at x = 3the slope of the curve is changing at15The magnitude of projection of $(2\hat{i} - \hat{j} + \hat{k})$ on $(\hat{i} - 2\hat{j} + 2\hat{k})$ is OR115Vector of magnitude 5 units and in the direction opposite to $2\hat{i} + 3\hat{j} - 6\hat{k}$ is1(Q16 - Q20) Answer the following questions116Check whether $(I + m + n)$ is a factor of the determinant $\begin{vmatrix} I + m & m + n & n + I \\ n & I & m \\ 2 & 2 & 2 \end{vmatrix}$ or not. Give reason.117Evaluate1			•
$x = 3 \text{ the slope of the curve is changing at} $ $15 \qquad The magnitude of projection of (2î - ĵ + k̂) on (î - 2ĵ + 2k̂) \text{is} $ $16 \qquad Vector of magnitude 5 units and in the direction opposite to 2î + 3ĵ - 6k̂ is $ $16 \qquad Check whether (l + m + n) is a factor of the $ $16 \qquad Check whether (l + m + n) is a factor of the $ $16 \qquad determinant \begin{vmatrix} l + m & m + n & n + l \\ n & l & m \\ 2 & 2 & 2 \end{vmatrix} \text{ or not. Give reason.}$ $17 \qquad Evaluate \qquad 1$		OR	
15The magnitude of projection of $(2\hat{i} - \hat{j} + \hat{k})$ on $(\hat{i} - 2\hat{j} + 2\hat{k})$ is1ORVector of magnitude 5 units and in the direction opposite to $2\hat{i} + 3\hat{j} - 6\hat{k}$ is(Q16 - Q20) Answer the following questions16Check whether $(I + m + n)$ is a factor of the determinant $\begin{vmatrix} I + m & m + n & n + I \\ n & I & m \\ 2 & 2 & 2 \end{vmatrix}$ or not. Give reason.117Evaluate			
ORVector of magnitude 5 units and in the direction opposite to $2\hat{i} + 3\hat{j} - 6\hat{k}$ is(Q16 - Q20) Answer the following questions16Check whether $(l + m + n)$ is a factor of the determinant $\begin{vmatrix} l + m & m + n & n + l \\ n & l & m \\ 2 & 2 & 2 \end{vmatrix}$ or not. Give reason.117Evaluate1		x = 3 the slope of the curve is changing at	
ORVector of magnitude 5 units and in the direction opposite to $2\hat{i} + 3\hat{j} - 6\hat{k}$ is(Q16 - Q20) Answer the following questions16Check whether $(l + m + n)$ is a factor of the determinant $\begin{vmatrix} l + m & m + n & n + l \\ n & l & m \\ 2 & 2 & 2 \end{vmatrix}$ or not. Give reason.117Evaluate1	15	The magnitude of projection of $(2\hat{i} + \hat{k}) = (\hat{i} - 2\hat{i} + 2\hat{k})$	1
Vector of magnitude 5 units and in the direction opposite to $2\hat{1} + 3\hat{j} - 6\hat{k}$ is(Q16 - Q20) Answer the following questions16Check whether $(I + m + n)$ is a factor of the determinant $\begin{vmatrix} I + m & m + n & n + I \\ n & I & m \\ 2 & 2 & 2 \end{vmatrix}$ or not. Give reason.117Evaluate1			
(Q16 - Q20) Answer the following questions16Check whether $(l + m + n)$ is a factor of the determinant116 $l + m - m + n - n + l \\ n - l - m \\ 2 - 2 - 2 - 2 - 2 - 2 - 1 - 1 - 1 - 1 -$			
16Check whether $(l + m + n)$ is a factor of the determinant1 $l + m m + n n + la ln l mor not. Give reason.117Evaluate1$	(0):-		
$determinant \begin{vmatrix} I+m & m+n & n+l \\ n & I & m \\ 2 & 2 & 2 \end{vmatrix} \text{ or not. Give reason.}$ 17 Evaluate 1			1
determinant n I m or not. Give reason. 17 Evaluate 1	10		I
17 Evaluate 1		determinant n I m or not. Give reason.	
	17	Evolucto	4
L lorg + 1) dor	17		.1
$\int_{-2} (x + 1) dx.$	40	$\int_{-2}^{2} (x^3 + 1) dx.$,
18 Find $\int \frac{3+3\cos x}{x+\sin x} dx$. 1	18	Find $\int \frac{s + s \cos x}{x + \sin x} dx$.	1
		3	
		J	

Find $\int (\cos^2 2x - \sin^2 2x) dx$ 119Find $\int xe^{(1+x^2)} dx$.120Write the general solution of differential equation $\frac{dy}{dx} = e^{x+y}$ 120SECTION - B121Express $\sin^{-1}(\frac{\sin x + \cos x}{\sqrt{2}})$:where $-\frac{\pi}{4} < x < \frac{\pi}{4}$, in the simplest form.221Express $\sin^{-1}(\frac{\sin x + \cos x}{\sqrt{2}})$:where $-\frac{\pi}{4} < x < \frac{\pi}{4}$, in the simplest form.222If = ae^{2x} , be the relation in the set Z of integers given by R = ((a, b) : 2 divides a - b). Show that the relation R transitive? Write the equivalence class [0].223A particle moves along the curve $x^2 = 2y$. At what point, ordinate increases at the same rate as abscissa increases?224For three non-zero vectors \vec{a}, \vec{b} and \vec{c} , prove that $[\vec{a} - \vec{b} - \vec{b} - \vec{c} - \vec{a}] = 0$.224For three non-zero vectors \vec{a}, \vec{b} and \vec{c} , prove that $[\vec{a} - \vec{b} - \vec{b} - \vec{c} - \vec{a}] = 0$.225Find the acute angle between the lines $\frac{5-4}{3} = \frac{y+3}{4} = \frac{z+1}{5}$ and $\frac{x-1}{4} = \frac{y+1}{-3} = \frac{z+10}{5}$ 226A speaks truth in 80% cases and B speaks truth in 90%cases. In what pare fact?227Let $f: A \to B$ be a function defined as $f(x) = \frac{2x+3}{x-3}$, where $A = R - (3)$ and $B = R - (2)$. Is the function f one –one and onto? Is finvertible? If yes, then find its inverse.428If $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$, then prove that $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$.429Solve the differential equation4		OR	
20Write the general solution of differential equation $\frac{dy}{dx} = e^{x+y}$ 121 SECTION - B 221Express $\sin^{-1}\left(\frac{\sin x+\cos x}{\sqrt{2}}\right)$; where $-\frac{\pi}{4} < x < \frac{\pi}{4}$, in the simplest form.221 Express $\sin^{-1}\left(\frac{\sin x+\cos x}{\sqrt{2}}\right)$; where $-\frac{\pi}{4} < x < \frac{\pi}{4}$, in the simplest form.222If = ae^{2x} + be r = x, then show that $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0$.223A particle moves along the curve $x^2 = 2y$. At what point, ordinate increases at the same rate as abscissa increases?224For three non-zero vectors \vec{a}, \vec{b} and \vec{c} , prove that $[\vec{a} - \vec{b} - \vec{b} - \vec{c} - \vec{a}] = 0$ 225Find the acute angle between the lines $\frac{x-4}{3} = \frac{y+3}{4} = \frac{z+1}{5}$ and $\frac{x-1}{4} = \frac{y+1}{-3} = \frac{z+10}{5}$ 226A speaks truth in 80% cases and B speaks truth in 90%cases. In what percentage of cases are they likely to agree with each other in stating the same fact?227Let f: A → B be a function defined as $f(x) = \frac{2x+3}{x-3}$, where A = R - (3) and B = R - (2). Is the function fone -one and onto? Is finwertible? If yes, then find its inverse.428If $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$, then prove that $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$.429Solve the differential equation4			
Write the general solution of understate equation $\frac{1}{dx} = c$ SECTION - B21Express $\sin^{-1}\left(\frac{\sin x + \cos x}{\sqrt{2}}\right)$; where $-\frac{\pi}{4} < x < \frac{\pi}{4}$, in the simplest form.2DR2If a e ^{2x} + be ^{-x} , then show that $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0$.223A particle moves along the curve $x^2 = 2y$. At what point, ordinate increases at the same rate as abscissa increases?224For three non-zero vectors \vec{a}, \vec{b} and \vec{c} , prove that $\left[\vec{a} \cdot \vec{b} \vec{b} \cdot \vec{c} \vec{c} \cdot \vec{a}\right] = 0$ 224Find the acute angle between the lines $\frac{x-4}{3} = \frac{y+3}{4} = \frac{z+1}{5}$ and $\frac{x-1}{4} = \frac{y+1}{-3} = \frac{z+10}{5}$ 226A speaks truth in 80% cases and B speaks truth in 90%cases. In what percentage of cases are they likely to agree with each other in stating the same fact?228If $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x - y)$, then prove that $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$.428Solve the differential equation4	19	Find $\int xe^{(1+x^2)}dx$.	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	Write the general solution of differential equation $\frac{dy}{dx} = e^{x+y}$	1
$\begin{array}{c} \text{Express form.} & \text{OR} \\ \hline \\ \text{Iter R be the relation in the set Z of integers given by} \\ \text{R} = \{(a, b) : 2 \text{ divides } a - b\}. \text{Show that the relation R transitive? Write the} \\ \text{equivalence class [0].} \\ \hline \\ \text{22} & \text{If } = ae^{2x} + be^{-x}, \text{ then show that} \frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0. \\ \hline \\ \text{23} & \text{A particle moves along the curve } x^2 = 2y . \text{At what point, ordinate} \\ \text{increases at the same rate as abscissa increases?} \\ \hline \\ \text{24} & \text{For three non-zero vectors } \vec{a}, \vec{b} \text{ and } \vec{c}, \text{ prove that } [\vec{a} - \vec{b} - \vec{b} - \vec{c} - \vec{a}] = 0 \\ \cdot \\ \hline \\ \text{If } \vec{a} + \vec{b} + \vec{c} = 0 \text{ and } \vec{a} = 3, \vec{b} = 5, \vec{c} = 7, \text{ then find the value of } \\ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} . \\ \hline \\ \text{25} & \text{Find the acute angle between the lines} \\ \hline \\ \text{34} & \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} . \\ \hline \\ \text{26} & \text{A speaks truth in 80\% cases and B speaks truth in 90\% cases. In what a same fact? \\ \hline \\ \hline \\ \text{27} & \text{Let } f: A \rightarrow B \text{ be a function defined as } f(x) = \frac{2x+3}{x-3}, \text{ where} A = R - (3) \text{ and } A \\ B = R - (2). \text{ Is the function f one -one and onto? Is f invertible? If yes, then find its inverse. \\ \hline \\ \text{28} & \text{If } \sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y), \text{ then prove that } \frac{dy}{dx} = \frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}. \\ \hline \\ \text{4} & \frac{\partial R}{dx^2} \text{ at } \theta = \frac{\pi}{8}. \\ \hline \\ \text{29} & \text{Solve the differential equation} \\ \hline \end{array}$		SECTION – B	
ORLet R be the relation in the set Z of integers given byR = {(a, b) : 2 divides a - b}. Show that the relation R transitive? Write the equivalence class [0].22If = ae ^{2x} + be ^{-x} , then show that $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0.$ 223A particle moves along the curve $x^2 = 2y$. At what point, ordinate increases at the same rate as abscissa increases?224For three non-zero vectors \vec{a}, \vec{b} and \vec{c} , prove that $[\vec{a} - \vec{b} - \vec{b} - \vec{c} - \vec{c} - \vec{a}] = 0$ 2 <td>21</td> <td></td> <td>2</td>	21		2
Let R be the relation in the set Z of integers given by R = {(a, b) : 2 divides a - b}. Show that the relation R transitive? Write the equivalence class [0].22If = $ae^{2x} + be^{-x}$, then show that $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0$.223A particle moves along the curve $x^2 = 2y$. At what point, ordinate increases at the same rate as abscissa increases?224For three non-zero vectors \vec{a}, \vec{b} and \vec{c} , prove that $[\vec{a} - \vec{b} - \vec{b} - \vec{c} - \vec{a}] = 0$.224For three non-zero vectors \vec{a}, \vec{b} and \vec{c} , prove that $[\vec{a} - \vec{b} - \vec{b} - \vec{c} - \vec{a}] = 0$.225Find the acute angle between the lines $\frac{x-4}{3} = \frac{y+3}{4} = \frac{z+1}{5}$ and $\frac{x-1}{4} = \frac{y+1}{-3} = \frac{z+10}{5}$ 2226A speaks truth in 80% cases and B speaks truth in 90%cases. In what percentage of cases are they likely to agree with each other in stating the same fact?227Let $f: A \to B$ be a function defined as $f(x) = \frac{xx+3}{x-3}$, where $A = R - \{3\}$ and $B = R - \{2\}$. Is the function f one –one and onto? Is f invertible? If yes, then find its inverse.428If $\sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y)$, then prove that $\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{\sqrt{1 - x^2}}$.429Solve the differential equation4			
equivalence class [0].22If = $ae^{2x} + be^{-x}$, then show that $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0$.223A particle moves along the curve $x^2 = 2y$. At what point, ordinate increases at the same rate as abscissa increases?224For three non-zero vectors \vec{a} , \vec{b} and \vec{c} , prove that $[\vec{a} - \vec{b} - \vec{b} - \vec{c} - \vec{c} - \vec{a}] = 0$ 224For three non-zero vectors \vec{a} , \vec{b} and \vec{c} , prove that $[\vec{a} - \vec{b} - \vec{b} - \vec{c} - \vec{c} - \vec{a}] = 0$ 224For three non-zero vectors \vec{a} , \vec{b} and \vec{c} , prove that $[\vec{a} - \vec{b} - \vec{b} - \vec{c} - \vec{c} - \vec{a}] = 0$ 225Find the acute angle between the lines $\frac{x-4}{3} = \frac{y+3}{4} = \frac{z+1}{5}$ and $\frac{x-1}{4} = \frac{y+1}{-3} = \frac{z+10}{5}$ 226A speaks truth in 80% cases and B speaks truth in 90%cases. In what percentage of cases are they likely to agree with each other in stating the same fact?227Let $f: A \to B$ be a function defined as $f(x) = \frac{2x+3}{x-3}$, where $A = R - \{3\}$ and $A = R - \{2\}$. Is the function f one –one and onto? Is finvertible? If yes, then find its inverse.428If $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$, then prove that $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$.429Solve the differential equation4			
23A particle moves along the curve $x^2 = 2y$. At what point, ordinate increases at the same rate as abscissa increases?224For three non-zero vectors \vec{a}, \vec{b} and \vec{c} , prove that $[\vec{a} - \vec{b} \vec{b} - \vec{c} \vec{c} - \vec{a}] = 0$.224For three non-zero vectors \vec{a}, \vec{b} and \vec{c} , prove that $[\vec{a} - \vec{b} \vec{b} - \vec{c} \vec{c} - \vec{a}] = 0$.225Find the acute angle between the lines $\frac{x-4}{3} = \frac{y+3}{4} = \frac{z+1}{5}$ and $\frac{x-1}{4} = \frac{y+1}{-3} = \frac{z+10}{-3}$ 226A speaks truth in 80% cases and B speaks truth in 90%cases. In what percentage of cases are they likely to agree with each other in stating the same fact?227Let $f: A \to B$ be a function defined as $f(x) = \frac{2x+3}{x-3}$, where $A = R - \{3\}$ and $\frac{4}{B} = R - \{2\}$. Is the function f one –one and onto? Is f invertible? If yes, then find its inverse.428If $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$, then prove that $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$.429Solve the differential equation4			
increases at the same rate as abscissa increases?24For three non-zero vectors \vec{a} , \vec{b} and \vec{c} , prove that $[\vec{a} - \vec{b} \vec{b} - \vec{c} \vec{c} - \vec{a}] = 0$ 2ORIf $\vec{a} + \vec{b} + \vec{c} = 0$ and $ \vec{a} = 3$, $ \vec{b} = 5$, $ \vec{c} = 7$, then find the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$.225Find the acute angle between the lines $\frac{x-4}{3} = \frac{y+3}{4} = \frac{z+1}{5}$ and $\frac{x-1}{4} = \frac{y+1}{-3} = \frac{z+10}{5}$ 226A speaks truth in 80% cases and B speaks truth in 90%cases. In what percentage of cases are they likely to agree with each other in stating the same fact?27Let $f: A \to B$ be a function defined as $f(x) = \frac{2x+3}{x-3}$, where $A = R - \{3\}$ and $A = \frac{1}{8}$ 28If $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$, then prove that $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$.OR28If $x = a(\cos 2\theta + 2\theta \sin 2\theta)$ and $y = a(\sin 2\theta - 2\theta \cos 2\theta)$, find $\frac{d^2y}{dx^2}$ at $\theta = \frac{\pi}{8}$.29Solve the differential equation	22	If $= ae^{2x} + be^{-x}$, then show that $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0$.	2
1 of the endine constants at both the endine constants at the born to the end tot	23		2
26A speaks truth in 80% cases and B speaks truth in 90%cases. In what percentage of cases are they likely to agree with each other in stating the same fact?227Let $f: A \rightarrow B$ be a function defined as $f(x) = \frac{2x+3}{x-3}$, where $A = R - \{3\}$ and $B = R - \{2\}$. Is the function f one –one and onto? Is f invertible? If yes, then find its inverse.428If $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$, then prove that $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$. OR429Solve the differential equation4	24	OR If $\vec{a} + \vec{b} + \vec{c} = 0$ and $ \vec{a} = 3$, $ \vec{b} = 5$, $ \vec{c} = 7$, then find the value of	2
$\begin{array}{c c} \mbox{percentage of cases are they likely to agree with each other in stating the same fact?} \\ \hline \\ \hline \\ \mbox{SECTION - C} \\ \hline \\ \mbox{27} & \mbox{Let } f: A \rightarrow B \mbox{ be a function defined as } f(x) = \frac{2x+3}{x-3}, \mbox{ where } A = R - \{3\} \mbox{and } B = R - \{2\}. \mbox{ Is the function f one -one and onto? Is f invertible? If yes, then find its inverse.} \\ \hline \\ \mbox{28} & \mbox{If } \sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y), \mbox{ then prove that } \frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{\sqrt{1 - x^2}}. \\ \hline \\ \mbox{OR} & \mbox{If } x = a(\cos 2\theta + 2\theta \sin 2\theta) \mbox{ and } y = a(\sin 2\theta - 2\theta \cos 2\theta), \\ \mbox{ find} \frac{d^2y}{dx^2} \mbox{ at } \theta = \frac{\pi}{8}. \end{array} \end{array} \right. $	25	Find the acute angle between the lines $\frac{x-4}{3} = \frac{y+3}{4} = \frac{z+1}{5}$ and $\frac{x-1}{4} = \frac{y+1}{-3} = \frac{z+10}{5}$	2
27Let $f: A \to B$ be a function defined as $f(x) = \frac{2x+3}{x-3}$, where $A = R - \{3\}$ and4 $B = R - \{2\}$. Is the function f one –one and onto? Is f invertible? If yes, then find its inverse.428If $\sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y)$, then prove that $\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{\sqrt{1 - x^2}}$.4ORIf $x = a(\cos 2\theta + 2\theta \sin 2\theta)$ and $y = a(\sin 2\theta - 2\theta \cos 2\theta)$, find $\frac{d^2 y}{dx^2}$ at $\theta = \frac{\pi}{8}$.429Solve the differential equation	26	percentage of cases are they likely to agree with each other in stating the	2
$B = R - \{2\}. \text{ Is the function f one -one and onto? Is f invertible? If yes, then find its inverse.}$ $B = R - \{2\}. \text{ Is the function f one -one and onto? Is f invertible? If yes, then find its inverse.}$ $If \sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y), \text{ then prove that } \frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{\sqrt{1 - x^2}}.$ OR $If x = a(\cos 2\theta + 2\theta \sin 2\theta) \text{ and } y = a(\sin 2\theta - 2\theta \cos 2\theta), \text{ find} \frac{d^2y}{dx^2} \text{ at } \theta = \frac{\pi}{8}.$ $29 \text{Solve the differential equation} \qquad 4$			
$\frac{1}{28} \qquad \begin{array}{c} \text{find its inverse.} \\ \hline 28 \\ If \sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y) \text{, then prove that } \frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{\sqrt{1 - x^2}} \text{.} \\ \hline 0R \\ \hline If x = a(\cos 2\theta + 2\theta \sin 2\theta) \text{ and } y = a(\sin 2\theta - 2\theta \cos 2\theta) \text{,} \\ find \frac{d^2y}{dx^2} \text{ at } \theta = \frac{\pi}{8} \text{.} \end{array} $	27	Let $f: A \to B$ be a function defined as $f(x) = \frac{2x+3}{x-3}$, where $A = R - \{3\}$ and	4
$ \begin{array}{c} 28 \\ If \sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y) , \text{ then prove that } \frac{dy}{dx} = \frac{\sqrt{1-y^2}}{\sqrt{1-x^2}} . \\ \hline 0R \\ If x = a(\cos 2\theta + 2\theta \sin 2\theta) \text{ and } y = a(\sin 2\theta - 2\theta \cos 2\theta) , \\ find \frac{d^2y}{dx^2} \text{ at } \theta = \frac{\pi}{8}. \\ \end{array} $ $ \begin{array}{c} 4 \\ 29 \\ \hline 29 \\ \end{array} $ Solve the differential equation $ \begin{array}{c} 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\$		$B = R - \{2\}$. Is the function f one –one and onto? Is f invertible? If yes, then	
$\frac{\text{If } \sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y) \text{, then prove that } \frac{1}{\sqrt{1 - x^2}} \text{.}$ $\frac{\text{OR}}{\frac{1}{\sqrt{1 - x^2}}} \text{If } x = a(\cos 2\theta + 2\theta \sin 2\theta) \text{ and } y = a(\sin 2\theta - 2\theta \cos 2\theta) \text{,}$ $\frac{1}{\sqrt{1 - x^2}} \text{ at } \theta = \frac{\pi}{8}.$ 29 Solve the differential equation 4		find its inverse.	
find $\frac{d^2 y}{dx^2}$ at $\theta = \frac{\pi}{8}$. 29 Solve the differential equation 4	28		4
29 Solve the differential equation 4		If $x = a(\cos 2\theta + 2\theta \sin 2\theta)$ and $y = a(\sin 2\theta - 2\theta \cos 2\theta)$,	
		find $\frac{d^2y}{dx^2}$ at $\theta = \frac{\pi}{8}$.	
	29	Solve the differential equation	4
$x_{1}x_{2} - x_{1}x_{2} = x/x_{1}^{2} + y_{1}^{2} + y_{2}^{2}$		$x dy - y dx = \sqrt{x^2 + y^2} dx$.	

30	Evaluate $\int_1^3 x^2 - 2x dx$.	4
31	Two numbers are selected at random (without replacement) from first 7 natural numbers. If X denotes the smaller of the two numbers obtained, find the probability distribution of X. Also, find mean of the distribution. OR There are three coins, one is a two headed coin (having head on both the faces), another is a biased coin that comes up heads 75% of the time and the third is an unbiased coin. One of the three coins is chosen at random and tossed. If It shows head. What is probability that it was the two headed coin ?	4
32	Two tailors A and B earn ₹150 and ₹200 per day respectively. A can stitch 6 shirts and 4 pants per day, while B can stitch 10 shirts and 4 pants per day. Form a L.P.P to minimize the labour cost to produce (stitch) at least 60 shirts and 32 pants and solve it graphically.	4
	SECTION D	
33	Using the properties of determinants, prove that $\begin{vmatrix} (y+z)^2 & x^2 & x^2 \\ y^2 & (z+x)^2 & y^2 \\ z^2 & z^2 & (x+y)^2 \end{vmatrix} = 2xyz(x+y+z)^3.$ OR	6
	If $A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & -1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$, find A^{-1} . Hence, solve the system of equations x - y = 3; 2x + 3y + 4z = 17; y + 2z = 7	
34	Using integration, find the area of the region $\{(x, y) : x^2 + y^2 \le 1, x + y \ge 1, x \ge 0, y \ge 0 \}$	6
35	A given quantity of metal is to be cast into a solid half circular cylinder with a rectangular base and semi-circular ends. Show that in order that total surface area is minimum, the ratio of length of cylinder to the diameter of semi-circular ends is $\pi : \pi + 2$. OR Show that the triangle of maximum area that can be inscribed in a given	6
	circle is an equilateral triangle.	
36	Find the equation of a plane passing through the points $A(2,1,2)$ and $B(4,-2,1)$ and perpendicular to plane ⁷ . $(\hat{i} - 2\hat{k}) = 5$. Also, find the coordinates of the point, where the line passing through the points (3,4,1) and (5,1,6) crosses the plane thus obtained.	6