This Question Paper contains 4 Printed Pages.

15E(A)

MATHEMATICS, Paper - I

(English version)

(Parts A and B)

Time : 2 hrs. 45 min.]

[Maximum Marks: 40

Instructions :

- 15 minutes of time is allotted exclusively for reading the question paper and 2.30 hours for writing the answers.
- 2. Part-A answers should be written in separate answer book.
- 3. There are three sections in Part-A.
- 4. Answer all questions.
- 5. Every answer should be written visibly and neatly.
- 6. There is an internal choice in section III of Part-A.

Casses Sutin Marks : 30

Time : 2 hours

SECTION - I

(Marks: 4×1=4)

NOTE: (i) Answer all the following questions. (ii) Each question carries 1 mark.

Write A = {2, 4, 8, 16} in set-builder form.

2. Find the value of $\log_5 \sqrt{625}$.

15E(A) в

[1]

P.T.O.

- The larger of two supplementary angles exceeds the smaller by 58°, then find the angles.
- Find the curved surface area of cylinder, whose radius is 7 cm. and height is 10 cm.

SECTION - II

(Marks: 5×2=10)

- **NOTE :** (i) Write answers to **all** questions.
 - (ii) Each question carries 2 marks.
- Rohan's mother is 26 years older than him. The product of their ages after 3 years will be 360. Then write the required quadratic equation to find Rohan's present age.
- 6. Find the zeroes of the quadratic polynomial $x^2 x 30$ and verify the relation between the zeroes and its co-efficients.
- A Joker's cap is in the form of right circular cone, whose base radius is 7 cm and height is 24 cm. Find the area of sheet required to make 10 such caps.
- 8. Find the HCF of 1260 and 1440 by using Euclid's division lemma.
- If the sum of first 15 terms of an A.P. is 675 and its first term is 10, then find 25th term.

SECTION - III

(Marks: 4×4=16)

NOTE: (i) Answer all the following questions.

(ii) Each question carries 4 marks.

10. (a) Show that $2+5\sqrt{3}$ is irrational.

OR

(b) Check whether - 321 is a term of the A.P.: 22, 15, 8, 1,

11. (a) In a class test, the sum of Moulika's marks in Mathematics and English is 30. If she got 2 marks more in Mathematics and 3 marks less in English, the product of her marks would have been 210. Find her marks in the two subjects.

OR

- (b) An oil drum is in the shape of cylinder, whose diameter is 2 m. and height is 7 m. The painter charges ₹ 5 per m² to paint the drum. Find the total charges to be paid to the painter for 10 drums.
- 12. (a) If $A = \{x : x \text{ is a natural number less than is } 6\}$.

 $B = \{x : x \text{ is a prime number which is a divisor of } 60\}.$

 $C = \{x : x \text{ is an odd natural number less than } 10\}.$

 $D = \{x : x \text{ is an even natural number which is a divisor of 48}\}.$

Then write roster form for all above sets and find

 $(i) \ \mathbf{A} \cup \mathbf{B} \qquad (ii) \ \mathbf{B} \cap \mathbf{C}$

(iii) A-D (iv) D-B.

OR

(b) 6 pencils and 4 note books together cost Rs. 90/- whereas 8 pencils and 3 note books together cost Rs. 85/-. Find the cost of one pencil and that of one note book.

15E(A) в

[3]

P.T.O.

13. (a) Find the zeroes of the quadratic polynomial $p(x) = x^2 + x - 20$ using graph.

OR

- (b) Solve the following pair of linear equations graphically,
 - 2x + y = 4 and 2x 3y = 12.

ClassResult.in

MARCH, 2019

This Question Paper contains 4 Printed Pages.

15E(B)

MATHEMATICS, Paper - I

(English version)

(Parts A and B)

Time : 2 hrs. 45 min.]

[Maximum Marks : 40

Instruction : Write the answers to the questions in this Part-B on the Question paper itself and attach it to the answer book of Part-A.

Part - B

Time : 30 minutes

Marks: 10

NOTE : (i) Each question has four options. Write the CAPITAL LETTERS

 (A, B, C, D) showing the correct answer for the following questions
 in the brackets provided against them.
 (ii) Marks are not awarded for over-written answers.

(iii) All questions carry equal marks.

SECTION -IV

Marks : $20 \times \frac{1}{2} = 10$

- **NOTE** : (i) Answer all the questions.
 - (ii) Each question carries $\frac{1}{2}$ mark.

14. If n(A) = 8, n(B) = 3, $n(A \cap B) = 2$, then $n(A \cup B) =$ []

(A)	5		(B)	7 -
-		8 - F		

(C) 9 (D) 13

15E(B)

[1]

в

15,	. Th	e discriminant of 6x	$x^2 - 5x + 1 = 0$ is	5	1	1
	(A)	1	(B)	2		
	(C)	6	(D)	$-\frac{5}{6}$		
16.	Sur	n of the zeroes of the	polynomial x^2	+5x+6 is	i	1
	(A)	5	(B)	-5		
	(C)	6	(D)	$\frac{5}{6}$		
17.	Wh	ich of the following is	s not irrational	?	1	1
	(A)	$\sqrt{2}$	(B)	$\sqrt{3}$		19.5
	(C)	$\sqrt{4}$	(D)	√5		
18.	One	root of the equation	$x - \frac{3}{x} = 2$ is	**	1	1
	(A)	1	(B)	2		
	(C)	3		Paci	ult.i	n
19.	If 4,	a, 9 are in G.P., then	a =	1001		1
	(A)	6	(B)	±6	10.00	
	(C)	7	· (D)	±7		
20.	Ifto	tal surface area of a c	cube is 96 cm ² , (then its volume is	. [1
	(A)	32 cm^3	· (B)	64 cm ³		
•	(C)	128 cm ³	(D)	256 cm ³		
21.	log10	0.001 =			1	1
	(A)	2	(B)	3		
	(C)	- 2	(D)	- 3		
			1.1			
15E	(B)	*	[2]			

		β, γ are zeroes of a cu		1181		
	ax ³	$+ bx^2 + cx + d, (a \neq 0),$	then		Ĩ	1
	<i>(i)</i>	$\alpha+\beta+\gamma$	(a)	$-\frac{d}{a}$		
	(ii)	$\alpha\beta+\beta\gamma+\gamma\alpha$	(6)	$\frac{c}{a}$		
	(iii)	αβγ	(c)	$-\frac{b}{a}$		
	(A)	$(i) \rightarrow c_i (ii) \rightarrow b_i (iii)$ -	$\rightarrow a$ (B)	$(i) \rightarrow a, (ii) \rightarrow b, (iii) \rightarrow c$		
	(C)	$(i) \rightarrow b, (ii) \rightarrow a, (iii)$	$\rightarrow c$ (D)	$(i) \rightarrow c, \ (ii) \rightarrow a, \ (iii) \rightarrow b$		
23.	The	next term in A.P. $\sqrt{3}$,	$\sqrt{12}, \sqrt{27}$	is	t	1
	(A)	$\sqrt{32}$	(B)	$\sqrt{36}$		
		$\sqrt{42}$	(D)			
24.		shaded region in the giv				
		P A B			ir	
		P ^µ A B	R	lesult .	ir	7
	(A)	A-B µ-B	(B)		ir	1
25.	(A) (C)	A-B µ-B	(B) (D)	Result. _{B-A}	ir	
85.	(A) (C) 5x-3 (A)	A-B $\mu-B$ B represents polynor Linear	(B) (D)	Result. _{B-A}	ir ı	1
85.	(A) (C) 5x-3 (A)	A - B $\mu - B$ B represents polynor	(B) (D) mial.	B-A AUB	ir t	
25.	(A) (C) 5x - : (A) (C)	A-B $\mu-B$ B represents polynor Linear Cubic	(B) (D) mial. (B) (D)	B-A A \cup B Quadratic A and B	ir t	
	(A) (C) 5x-3 (A) (C) The ((A)	A-B $\mu-B$ B represents polynom Linear Cubic common difference of A. 1	(B) (D) mial. (B) (D) P. log ₂ 2, 1 (B)	B-A A \cup B Quadratic A and B	ir ſ	
	(A) (C) 5x - : (A) (C) The o	A-B $\mu-B$ B represents polynom Linear Cubic common difference of A. 1	(B) (D) mial. (B) (D) P. log ₂ 2, 1	B-A A \cup B Quadratic A and B $og_2 4, log_2 8$ is	ir ſ	
:6.	(A) (C) 5x - : (A) (C) The c (A) (C) The s	$\begin{array}{c} \mu & \mu & \mu \\ \mu & \mu & \mu \\ \mu & \mu & \mu \\ \mu & -\mu & \mu \\ \mu & \mu & \mu \\ \mu & \mu & \mu \\ \mu & \mu & $	(B) (D) mial. (B) (D) P. log ₂ 2, 1 (B) (D)	B-A A \cup B Quadratic A and B $og_{2} 4$, $log_{2} 8$ is 2 4 s is	r r	
:6.	(A) (C) 5x - : (A) (C) The ((A) (C)	$\begin{array}{c} \mu & \mu & \mu \\ \mu & \mu & \mu \\ \mu & \mu & \mu \\ \mu & -\mu & \mu \\ \mu & \mu & \mu \\ \mu & \mu & \mu \\ \mu & \mu & $	(B) (D) mial. (B) (D) P. log ₂ 2, 1 (B) (D)	B-A A \cup B Quadratic A and B $og_{2} 4$, $log_{2} 8$ is 2 4	ir 1	
:6.	(A) (C) 5x - : (A) (C) The ((A) (C) The s (A)	$\begin{array}{c} \mu & \mu & \mu \\ \mu & \mu & \mu \\ \mu & \mu & \mu \\ \mu & -\mu & \mu \\ \mu & \mu & \mu \\ \mu & \mu & \mu \\ \mu & \mu & $	(B) (D) mial. (B) (D) P. log ₂ 2, 1 (B) (D) ral number	B-A A \cup B Quadratic A and B $og_{2} 4$, $log_{2} 8$ is 2 4 s is	ir t	

